Safe Harbor for Forward-Looking Statements

This presentation contains "forward-looking statements" as that term is defined in Section 27A of the United States Securities Act of 1933, as amended and Section 21E of the Securities Exchange Act of 1934, as amended. Statements in this presentation which are not purely historical are forward-looking statements and include any statements regarding beliefs, plans, expectations or intentions regarding the future. These forward-looking statements generally can be identified by phrases such as Nascent Biotech, Inc. ("NBI") or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar importance. Such forward-looking statements include, among other things, the development, costs and results of new business opportunities. Actual results could differ from those projected in any forward-looking statements due to numerous factors. These forward-looking statements are made as of the date of this presentation, and we assume no obligation to update the forward-looking statements, or to update the reasons why actual results could differ from those projected in the forward-looking statements. Although we believe that any beliefs, plans, expectations and intentions contained in this presentation are reasonable, there can be no assurance that any such beliefs, plans, expectations or intentions will prove to be accurate. Investors should review all of the information set forth herein, and should also understand the risk factors and the inherent uncertainties associated with new business opportunities and development stage companies. Any use of this information for any purpose other than in connection with the consideration of an investment in Nascent Biotech, Inc. ("NBI") may subject the user to criminal and civil liability.

This presentation does not constitute an offer to sell any securities or the solicitation of an offer to sell any securities by NBI.
Investment Highlights

- Lead compound’s target, ectodomain vimentin, is a novel target on “unmet-need” cancers
 - Initial focus on brain
 - Received orphan drug designations for gliomas and pancreatic cancer
- Key preclinical development completed
 - Found to be “Biologically Active” in human trials at extremely low doses
- Several key milestones expected in 2016 and early 2017
- Platform development opportunity as compound also addresses “large-market” cancers such as lung, breast and colon
- Supported by seasoned management team and accomplished board
Seasoned Management Team

- **Sean Carrick** – CEO, President and Director
 - Over 25 years of success building and leading medical device, pharma and biotech companies in large, mid-cap and venture backed stages including Pfizer, Praecis, Conmed and Maquet.

- **Brandon Price, PhD.** – Senior Vice President of Business Development and Director
 - Over 30 years’ experience in the biopharmaceutical industry including Cardinal Health BioReliance, and Ortho Diagnostic Systems.
 - CEO of five biotechnology start-ups.

- **Lowell Holden** – Chief Financial Officer, Treasurer and Director
 - Over 50 years of business and financial accounting experience including meeting public company auditing and SEC reporting requirements.
Highly Accomplished Advisory Board

- **Mark Glassy, PhD.** - Founder, Chair, Scientific Advisory Board - Over 30 years’ experience in antibody development and commercialization. Prepared and directed several FDA-approved clinical trials utilizing human monoclonal antibodies to fight cancer.

- **Santosh Kesari, MD, PhD.** - Principal Investigator - Chair, Department of Translational Neuro-Oncology and Neurotherapeutics; Professor of Neurosciences, John Wayne Cancer Institute; Director of Neuro-Oncology, Providence Saint John’s Health Center; and, Member, Los Angeles Biomedical Research Institute.

- **Eric F. Glassy, MD.** - Board certified in Anatomic and Clinical Pathology with a specific interest in Hematopathology, Information Technology and Digital Pathology.

- **Robert Z. Goldstein, MD.** - Certified by the American Board of Internal Medicine, American Board of Nephrology, American Board of Addiction Medicine and American Society of Addiction Medicine (ASAM).
Monoclonal Antibodies are the future of pharmaceuticals

- Monoclonal antibodies (mAbs) are exquisitely specific, extremely sensitive, and result in effective immunotherapies
- mAbs can be used to effectively treat diseases previously considered difficult or untreatable (e.g., autoimmune and certain cancers)

World’s Top 10 Selling Drugs

<table>
<thead>
<tr>
<th>Year</th>
<th>2005</th>
<th>2010</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shares</td>
<td>0 of Top 10 Drugs</td>
<td>5 of Top 10 Drugs</td>
<td>6 of Top 10 Drugs</td>
</tr>
<tr>
<td>$34.1B</td>
<td>$50.1B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Humira
2. Remicade
3. Rituxan
4. Enbrel
5. Avastin
6. Herceptin
7. Avastin
8. Herceptin
9. Enbrel
10. Remicade

Confidential | Nascent Biotech, Inc. (OTC: NBIO)
Pritumumab

• Fully human monoclonal antibody (mAb)
 - Naturally occurring proteins that bind with exquisite specificity to molecular structures on the surface of target cells.

• Recognizes a unique, highly-conserved, antigen expressed on the surface of cancer cells

• $48M US equivalent previously invested in Japanese clinical trials
 - 249 patients treated → positive clinical data demonstrated
 - Original mAb made from Hybridoma – not able to be produced in commercial amounts
 - 41 peer-reviewed published papers

• Orphan drug designation for treatment of gliomas received from FDA in October 2015

• Orphan drug designation for treatment of pancreatic cancer received from FDA in April 2016
Novel Target - Ectodomain Vimentin (EDV)

- Vimentin is a Type III intermediate filament protein
- It is part of the internal structure of normal cells

- EDV is a variant of Vimentin that is expressed on the outside surface of a variety of tumor cell types …
- But not on surface of most normal cells → most normal cells not targeted
- Epitope recognized by Pritumumab is **highly conserved**
- Present on the surface of circulating tumor cells (CTCs)
Pritumumab Attacks Cancers of Epithelial Origin – Difficult to Treat

* Epithelial tissues line the cavities and surfaces of blood vessels and organs throughout the body.

Pancreas, adenocarcinoma

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cancer</th>
<th>Millions (2012)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lung</td>
<td>1.83</td>
</tr>
<tr>
<td>2.</td>
<td>Breast</td>
<td>1.68</td>
</tr>
<tr>
<td>3.</td>
<td>Colon</td>
<td>1.36</td>
</tr>
<tr>
<td>4.</td>
<td>Prostate</td>
<td>1.11</td>
</tr>
<tr>
<td>5.</td>
<td>Stomach</td>
<td>0.95</td>
</tr>
<tr>
<td>6.</td>
<td>Liver</td>
<td>0.79</td>
</tr>
<tr>
<td>7.</td>
<td>Cervix</td>
<td>0.53</td>
</tr>
<tr>
<td>8.</td>
<td>Esophagus</td>
<td>0.46</td>
</tr>
<tr>
<td>9.</td>
<td>Bladder</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Top 9 cancers are epithelial and account for approximately 9M new cancers each year.

Brain Cancer is Initial Target Market

- With current therapeutic strategies (surgery, TEMODAR®), 1 & 5 yr survival rates are 60% & 35% for all brain cancers (36% & 5% for glioblastomas) - SEER Registry Data (June 2016)

- Brain metastases occur will occur in 20-40% of all cancer patients - estimated 98,000 to 170,000 new cases diagnosed in the US each year - National Cancer Institute (February 25, 2015)

- Global annual glioblastoma brain cancer market is expected to almost triple from $340M to $910M between 2014-2022, an 11.4% CAGR. - Transparency Market Research (June, 2015)

- Expedited drug development and approval process
 - Orphan drug designation → Smaller number of patients in clinical trials → reduced cost
 - Short survival times → more rapid assessment of clinical end-points
Pritumumab kills human tumor cells

In Vitro ADCC Assay (ME-180 Cells)

% specific 51Cr release

Effector/target ratio

Pritumumab

No mAb

Biological assay-employs human white cells

Osumi et al., Cancer Letters 62 (1992) 179-183

Pritumumab localizes to tumor in brain (animal model)

Blood Vessels

Pritumumab

Mouse Brains

Healthy

Tumor

(human study)

3 human patients had tumors resected 72 hours after IV administration - pritumumab was present in the tumor -

“Unpublished Data from laboratory of Dr. Santosh Kesari, USCD Moores Cancer Center (April, 2015)”
Serum anti-idiotype antibodies correlates with tumor shrinkage

Anti-idiotype antibody concentration (μg/mL)

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Anti-idiotype antibody concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-80%</td>
</tr>
<tr>
<td>2</td>
<td>-38%</td>
</tr>
<tr>
<td>3</td>
<td>CR</td>
</tr>
<tr>
<td>4</td>
<td>-44%</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>PD</td>
</tr>
<tr>
<td>7</td>
<td>PD</td>
</tr>
<tr>
<td>8</td>
<td>PD</td>
</tr>
<tr>
<td>9</td>
<td>PD</td>
</tr>
<tr>
<td>10</td>
<td>PD</td>
</tr>
</tbody>
</table>

Anti-idiotype only measured in 10 patients

Iwakoshi et. al., Jpn J. Neurosurg 5 (1996) 266-271

MRI evidence of tumor shrinkage

Glassy & Hagiwara, Human Antibodies 18 (2009) 127-137

- 61 year old male
- Astrocytoma of right parietal lobe
- Tumor shrinkage – 88% at 25 wks

Anti-idiotype only measured in 10 patients

Iwakoshi et. al., Jpn J. Neurosurg 5 (1996) 266-271

Confidential | Nascent Biotech, Inc. (OTC: NBIO)
Overview of Human Clinical Trials in Japan

Clinical studies, involving 249 patients, were conducted at dozens of Japanese hospitals from 1988 to 2002 – data published in 6 peer-reviewed journals.

126 Evaluated for Safety
74 of 126 evaluated for efficacy

- Based upon protocol compliance - a neuro-oncology panel selected 126 cases with sufficient evaluation data for submission to the Japan Ministry of Health & Welfare (MHW)

- Two dosage regimens
 - 1 x 1 mg dose per week (16 patients)
 - 2 x 1 mg doses per week (58 patients)

- Focused on “poor outcome” gliomas
 - Glioblastoma (32 patients)
 - Malignant astrocytoma (29 patients)
 - Astrocytoma (8 patients), Others (5 patients)

- Typically, approved mAbs are dosed at 5 mg/kg or higher (equal to 350 mg or more per patient)
Japanese Trials - 126 Patients Were Evaluated for Safety

<table>
<thead>
<tr>
<th>Study Phase</th>
<th>Dose Freq.</th>
<th>Subjects</th>
<th># of Cases</th>
<th>mg/dose, route, # cases</th>
<th>Admin. Period</th>
<th>Primary Site # of Sites</th>
<th>Study Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1/wk</td>
<td>Gliomas</td>
<td>8</td>
<td>1 mg, IV, 3 1 mg, IT, 2 2 mg, IV, 3</td>
<td>4 wks</td>
<td>Kobe Univ. School of Medicine 8</td>
<td>3/90 to 2/91</td>
</tr>
<tr>
<td></td>
<td>2/wk</td>
<td></td>
<td>9</td>
<td>1 mg, IV, 7 1 mg, IT, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early II</td>
<td>1/wk</td>
<td>Primarily anaplastic astrocytoma & glioblastoma</td>
<td>18</td>
<td>1 mg, IV</td>
<td>24 wks</td>
<td>Univ. of Tokyo Faculty of Med. 16</td>
<td>5/91 to 12/92</td>
</tr>
<tr>
<td></td>
<td>2/wk</td>
<td></td>
<td>24</td>
<td>1 mg, IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late II</td>
<td>1/wk</td>
<td>Same as above</td>
<td>67</td>
<td>1 mg, IV</td>
<td>24 wks</td>
<td>Univ. of Tokyo Faculty of Med. 20</td>
<td>7/93 to 5/96</td>
</tr>
</tbody>
</table>

126

IV = intravenous; IT – direct injection into tumor
Tumor Size Change Data Suggest a Clinical Response Even at Extremely Low Doses

<table>
<thead>
<tr>
<th>Objective Response Criteria</th>
<th>Tumor Reduction (Vol %)</th>
<th># Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Remission</td>
<td>-100%</td>
<td>3</td>
</tr>
<tr>
<td>Partial Remission</td>
<td>-51% to -99%</td>
<td>8</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>+25% to -50%</td>
<td>37</td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>>=+25%</td>
<td>26</td>
</tr>
</tbody>
</table>

74 Total

Clinical trial doses were 100+ times LOWER than currently approved mAbs
Independent* Analysis of Japanese Data

<table>
<thead>
<tr>
<th>Kaplan-Meier</th>
<th>Pritumumab Median Survival Time (months)</th>
<th>Historical Median Survival Time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant Astrocytoma (Grade III)</td>
<td>19.3</td>
<td>7.9</td>
</tr>
<tr>
<td>Glioblastoma (Grade IV)</td>
<td>7.1</td>
<td>5.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mantel-Cox</th>
<th>N (1 dose per wk)</th>
<th>N (2 doses per wk)</th>
<th>Log - Rank 1 mg vs 2 mg p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant Astrocytoma (Grade III)</td>
<td>13</td>
<td>34</td>
<td>0.5675</td>
</tr>
<tr>
<td>Glioblastoma (Grade IV)</td>
<td>11</td>
<td>42</td>
<td>0.0836</td>
</tr>
</tbody>
</table>

Caveat: It is extremely difficult to compare across studies given differences in tumor types, different evaluation criteria, types of treatments, performed over a six-year period 20-25 years ago.

Dr. Santosh Kesari - Chair, Department of Translational Neuro-Oncology and Neurotherapeutics, Professor of Neurosciences, John Wayne Cancer Institute
Takeaway on Japanese Clinical Data

“The Japanese data showed that Pritumumab was well tolerated and had clear objective biological activity with shrinkage of tumors at low doses. Confirmatory trials need to be performed at substantially higher dose levels.”

-Dr. Santosh Kesari, Chair, Department of Translational Neuro-Oncology and Neurotherapeutics, Professor of Neurosciences, John Wayne Cancer Institute

Pritumumab dosages in the planned Phase I/II human clinical study will be higher, ranging from 0.015 mg/kg to 10.0 mg/kg (1 to 700 mg) per patient
Significant Milestones Achieved Since 2014

- Successfully re-engineered the Pritumumab antibody into Chinese hamster ovary (CHO) cells
- Created and fully characterized a Master Cell Bank (MCB)
- Produced over 400 grams of clinical-grade Pritumumab – employing the GPEx® cell culture system at remarkably high titers (> 3 gm/l)
- Conducted well-received pre-IND and clinical protocol discussions with the FDA
- Granted orphan drug designation by the FDA for treatment of gliomas (brain cancers) and pancreatic cancer
- Completed in-life toxicology studies (monkey and rat) in accord with FDA requirements – with no clinical adverse effects
- Settled $1.7M debt to a license holder
- Retired debenture – eliminating potential shareholder dilution of ~30%
- Eliminated all long-term debt
June 2016

Licensed Pritumumab to Zhejiang Hisun Pharmaceutical, a major Chinese company

- $16 million in milestone payments and significant 20-year royalty stream.
- $3 million initial payment received. *Non-dilutive funding creates significant positive shareholder equity*
- Enables NBIO to submit IND
2016 and Q1 2017 Goals...

- Complete fill/finish of bulk drug substance
- Finalize toxicology reports
- Complete IND and submit to the FDA (Q1 2017)
- Initiate Phase I/II human clinical studies in the US for glioblastoma indication (including brain metastases)
 - Pritumumab dosages in the clinical study will be higher than in the Japanese studies, ranging from 0.015 mg/kg to 10.0 mg/kg (or 1 to 700 mg per patient)
- Prepare IND for second indication
Clinical Timeline & Milestones

Clinical Plan: Test Pritumumab at higher doses more typical of approved mAbs
Financial Highlights and Capitalization Table

September 30, 2016

(Unaudited)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>$376,814</td>
</tr>
<tr>
<td>Prepaid</td>
<td>145,500</td>
</tr>
<tr>
<td>R&D Materials</td>
<td>827,964</td>
</tr>
<tr>
<td>Total Assets</td>
<td>1,350,278</td>
</tr>
<tr>
<td>Accounts Payable and accrued liabilities</td>
<td>116,151</td>
</tr>
<tr>
<td>Current Liabilities</td>
<td>22,793</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>138,944</td>
</tr>
<tr>
<td>Stockholders Equity</td>
<td>$1,211,334</td>
</tr>
<tr>
<td>Common Shares Outstanding</td>
<td>21,845,115</td>
</tr>
<tr>
<td>Options Outstanding</td>
<td>1,365,000</td>
</tr>
<tr>
<td>Warrants Outstanding</td>
<td>63,317</td>
</tr>
<tr>
<td>Fully Diluted Shares Outstanding</td>
<td>23,273,432</td>
</tr>
</tbody>
</table>

Confidential | Nascent Biotech, Inc. (OTC: NBIO)
Key Takeaways

- Pritumumab’s target, Ectodomain vimentin, is a novel, conserved target on “unmet-need” cancers
 - *Completed trials support additional testing at higher doses in a well-controlled trial*

- Major risks with program have been minimized
 - **Technical**
 - *Drug has been manufactured at clinical scale*
 - 400+ grams of GMP-compliant Pritumumab are available for clinical use
 - *Toxicology studies have shown Pritumumab is safe*
 - **Clinical**
 - *Pritumumab has already been safely given to 249 patients in Japan*
 - *Data in 126 patients evaluated by MHW showed positive biological activity*

- Several key milestones expected in 2016 – Clinical trails initiate in Q1 2017

- Platform development opportunity as Pritumumab also addresses “large-market” cancers such as lung, breast and colon
Survival Analysis – Malignant Astrocytoma
(1 vs 2 doses per week – 1 mg/dose)

1 mg (0.014 mg/kg) per week
93 weeks

2 mg (0.028 mg/kg) per week
61 weeks

P = 0.5675
Survival Analysis – Glioblastoma
(1 vs 2 doses per week – 1 mg/dose)

Survival of Glioblastoma
Survival proportions

$N = 11$
Glioblastoma 1mg/wk

$N = 42$
Glioblastoma 2mg/wk

1 mg (0.014 mg/kg) per week
23 weeks

2 mg (0.028 mg/kg) per week
34 weeks

$P = 0.0836$